《电力系统装备》范例

分类:范例范文 发表时间:2021-12-27 01:00:00

电力系统装备》以深度学习、强化学习为代表的新一代人工智能技术及其应用是当前电力系统领域的研究热点。人工智能技术具有不依赖物理机理,计算速度快,辨别效率高等优点。但人工智能固有的可解释性差、稳定性弱等缺点也制约了其在电力系统一些场景的应用。文中梳理了新一代人工智能技术在电力系统负荷和新能源预测、故障诊断、在线稳定性评估、频率及电压优化控制和电网运行方式制定等调度运行场景中的应用,并进行了分析和评述。总结了现有研究中存在的问题,指出人工智能技术的应用应当以问题为导向,以场景为基础,以应用为目的。最后,对未来人工智能技术在电力系统调度运行中的应用作出了展望。现有网络安全风险研究仍然存在基础概率不准确和严重性模型缺失等问题。文中首先基于变电站电力监控系统框架提出"边界-本体防护"模型来描述系统入侵威胁,根据历史数据的机器学习结果完善基础入侵概率模型,基于广义随机佩式网和电力监控系统的网络安全拓扑得到特定状态转移图Cyber-net。然后,根据系统的运行结果和马尔可夫链稳态概率量化电力系统信息安全和工程安全的相关关系,提出网络安全综合风险评估模型,并通过暂态故障计算提高了风险模型的准确性。最后,通过算例仿真和灵敏性分析验证了模型的有效性和适用性,总结出了可行防御策略和潜在应用场景。在智能电网中,精准的数据采集是整个系统安全与经济运行的基础。随着信息与物理系统融合的不断加深,各类大数据应用与实时控制等任务对采集高频数据的要求不断提高。然而,提高数据采样频率必然给系统造成更高的数据通信与存储负担。文中提出了一种基于深度学习的超分辨率感知技术,用于从低频采样的传感器数据中恢复精确的高频数据。具体地,提出了一种基于门控循环单元网络的深度端到端超分辨率感知方法,包括特征提取、关系推断、信息重建3个部分。特征提取部分采用一维卷积网络对低频数据进行特征提取;在关系推断部分应用门控循环单元网络对获得的特征进行学习,推断低频数据同高频数据间内在关系;在信息重建部分则使用全连接层对推断信息进行重建,获得对应的高频数据。采用所提方法对居民用户和工业用户功率数据及输电线电压数据进行超分辨率感知,同时使用恢复的高频数据进行负荷状态识别。算例结果表明所提方法能够精准有效地恢复低频数据的丢失信息并提升负荷识别等实际应用的准确性。针对电力系统暂态稳定预防控制在线计算的复杂性,提出一种基于生成对抗网络的暂态稳定预防控制方法。通过将暂态稳定预防控制建模为样本空间映射问题,该方法利用数据驱动方法训练生成模型,建立从暂态失稳运行空间到暂态稳定运行空间的映射。模型通过调整电网中发电机的有功出力,提高电网的暂态稳定裕度,使电网运行点满足暂态稳定校核的要求。与传统优化建模方法相比,所提方法通过神经网络的前馈推断求解控制策略,无需迭代求解,极大地提高了求解效率。基于新英格兰39节点系统的测试结果验证了所提方法的可行性和有效性。基于人工智能的电力系统暂态稳定预测方法会出现漏判(将失稳样本错误分类成稳定样本)和误判(将稳定样本错误分类成失稳样本)的现象,使得该方法不易在工程实践中应用。为此,文中基于集成卷积神经网络(CNN)提出了一种计及漏判/误判代价的两阶段电力系统暂态稳定预测方法。在第1阶段,利用滑动时间窗输入特征训练得到不同响应时间层次的集成CNN模型,建立各层输出结果的可信度指标,将可信度阈值优化选择问题转化成多目标优化问题,最大限度地减少甚至消除漏判,并尽可能早地输出可信度高的样本;在第2阶段,对分层预测阶段预测的失稳样本采用多判据融合的紧急控制启动策略,尽可能减少误判所带来的实际损失。仿真算例分析表明,文中所提方法可以以最小代价最大限度地减少甚至消除漏判,以提高人工智能暂态稳定预测结果在工程上应用的可能性。针对当前风电调频备用容量长期闲置、未充分服务于电网运行的问题,深化研究大规模风电调频备用容量优化配置方法,对于电网调频能力、风力发电经济性、电网调峰方面均具有重要影响。基于此,研究大规模风电参与一次调频的备用容量优化配置策略。根据日负荷预测曲线,在波峰时段设置较大调频基点功率、波谷时段设置较小基点功率,其他时段按照与波峰负荷比例设置基点功率,从而可在一日各时段配置风电调频动态备用容量;根据确定的各时段动态备用容量,求解基于转速控制或桨距控制一次调频策略的参考转速和参考桨距角,使风电机组在任意风速下(额定风速以上/下)动态调整一次调频备用容量。算例分析结果表明,在大规模风电并网场景中,所提策略不仅能保证电网调频需求,还能有效促进削峰填谷效果和提高风力发电经济性。由于泛在电力物联网融入了社会的不可预知因素,导致互联环境复杂多样,终端设备接入类型与数量激增,时刻面临网络攻击和非安全数据入侵等安全隐患。因此,已有的安全检测与防护技术不再完全适用于如今的泛在电力物联网,文中从生物免疫学新视角探讨了泛在电力物联网安全技术。首先,类比病原体入侵生物体时免疫系统的免疫过程,阐述了生物免疫学与泛在电力物联安全防护的关联;其次,分析了感知层、网络层、平台层和应用层面临的安全挑战,并基于免疫学归纳了抗原识别、免疫响应和免疫记忆3方面的关键技术;最后,构想了泛在电力物联网全方位智能联动的安全免疫体系,并对研究方向进行了展望。电网智能优化运行依赖于对系统的泛在感知和完整正确的数据支持,这也是泛在电力物联网感知层必然要达到的最基本要求。在泛在电力物联网应用中,获取完整正确的量测数据是治理电能质量问题的基础。然而,在实际电网采集传输的全环节中,会不可避免地发生数据残缺。针对上述情况,提出基于低秩矩阵填充理论的泛在电力物联网电能质量感知数据补全新方法。首先证明了电能质量数据具有近似低秩的特性,以此为依据,设计多范数联合的秩优化模型,并应用交替方向乘子法将其分解为若干子问题分别求解。同时针对传统交替方向乘子法求解缓慢的问题,提出自适应迭代步长最优选取策略,加快模型求解速度。通过电压暂升、电压中断、脉冲振荡、电压暂降、谐波污染等高频故障场景验证所提方法的有效性,实验结果表明所提方法适用于多场景下的电能质量数据恢复,在缺失50%数据时仍能保证数据矩阵恢复误差在3%以内。






关键词: